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Eight-Parameter Renormalization Group 
for Penrose Lattices 
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The Ising model and the bond percolation model are set up with eight 
parameters on two-dimensional Penrose lattices. The behavior of their phase 
transition is studied by the use of a real-space renormalization group method. 
The resulting critical indices suggest that they belong to the universality class of 
two-dimensional periodic lattices. 
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1. I N T R O D U C T I O N  

Quasicrystals are attracting wide interest because of their unique structure: 
There is no periodic (but quasiperiodic) translational order and yet they 
are not amorphous systems. ~1) One of the important questions to be 
answered is whether quasicrystals belong to the same universality class of 
periodic lattices. 

In previous papers, we reported a real-space renormalization group 
analysis of the Ising model (2) and the bond percolation model (3) on 
Penrose lattices. The renormalization scheme we developed was based on 
the decimation transformation called "half-inflation," in which the kite-dart 
(KD) lattice is transformed into the rhombus (R) lattice and vice versa. We 
included four types of interaction along the edges and some of the 
diagonals of tiles. Within this four-parameter space, the microstructure 
around a lattice site to be decimated was taken into account statistically. 
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Our results for the critical point are in good agreement with computer 
simulation (4'5) and the critical exponent (thermal for the Ising model and 
the correlation length for the percolation problem) is not far from the 
universal value for two dimensions. This suggests that models on the 
Penrose lattice generally belong to the universal class of periodic lattices. 
This conjecture is further supported by the recent proof by Choy (6) that a 
certain Baxter-type model on the Penrose lattice belongs to the universality 
class of two-dimensional lattices. 

The Ising model on the dual Penrose lattice has been studied by 
Godreche and Orland. (7) They introduced eight coupling constants on the 
dual lattice and wrote down a renormalization group. In this paper we 
introduce eight types of interactions to the renormalization group treat- 
ment as Godreche and Orland did so that the statistical average over the 
microstructures can be avoided. We determine the critical surface in this 
eight-dimensional space and obtain the critical exponent. In the next sec- 
tion, we briefly review the method employed in Refs. 2 and 3. Section 3 
gives the derivation of the new renormalization group equations and the 
result of the numerical analysis. The last section contains the summary and 
discussions. 

2. F O U R - P A R A M E T E R  R E N O R M A L I Z A T I O N  G R O U P  

In Refs. 2 and 3 we assigned four coupling constants kl,..., k4 to the 
KD-lattice and another four rl,..., r4 to the R lattice, 

k I : short edge 
k2 : long edge 
k 3 : short "diagonal" of dart 
k 4: short diagonal of kite 
rl: single-arrowed edge 
r 2 : double-arrowed edge 
r 3 : short diagonal of thin rhombus 
r4: long diagonal of thick rhombus 

For the Ising model, ki and ri denote exp(-2J]kT), where Ji is the 
exchange interaction assigned to the bond, T is the temperature, and k is 
the Boltzmann constant. For the bond percolation, ki and r~ denote the 
bond occupation probabilities. 

The self-similarity transformation for the quasilattice is "inflation," 
which transforms a Penrose lattice to a same type of Penrose lattice (but 
not necessarily exactly the same lattice). The new lattice is spanned by tiles 

times larger than before in linear scale [r = (x//5+ 1)/2 is the golden 
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ratio]. We denote the inflation by j R  (for Rlattice) and or (for KD 
lattice). An inflation consists of two successive "half-inflations" j R  and 
J ~ ,  which transform KD lattice to R lattice and R lattice to KD lattice, 
respectively, 

~/-RR= R K ~ K  __ ~'K ~'-R (2 .1 )  
~$'K ~ ' R  ' ~ K  - -  ~ R  ~ K  

The renormalization group equations were given for each of the operations 
j R  and J R  K and then combined according to (2. !). In each half-inflation, a 
lattice site to be decimated is contained in a subunit illustrated in Fig. la. 
Let us restrict our discussion to the Ising model for the moment. The first 
step is to give a scheme to approximate the partition function for Fig. la by 
that for Fig. lb. The resulting "effective" coupling constants e(a, b, c), 

f ( a ,  b, c), and g(a, b, c) were given explicitly in Ref. 2. [The coupling con- 
stants e and f are defined to be squares of the usual coupling constants, 
e.g., e -  exp( -4J /kT) . ]  The next step is to combine the subunits of Fig. lb 
together to produce the inflated lattice. Note that the way they are com- 
bined in the inflated lattice is not unique and depends on the configuration 
of the neighborhood. For example, the link rl can be shared by (1) two fat 
rhombi, (2) a fat rhombus and a thin rhombus, or (3) two thin rhombi. In 
case 1, r! has contributions of e from both of the fat rhombi and thus 
r I = k4e. On the contrary, for the cases 2 and 3, the power of e is 1/2 and 0, 
respectively. The same ambiguity exists for other edges, r2, kl,  and k2. In 
Ref. 2, we calculated the probability of occurrence pO)-(3) for each case and 
took the statistical average, e.g., r 1 = k  4 exp(p~l)+�89 (It turned out 
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Fig. 1. (a) The subunit  before the decimation, which consists of five sites and four bonds. 
The open circle at the center is to be decimated. The coupling constants a, b, and c denote r's 
and k's (b) The subunit  after the decimation, which consists of four sites and five bonds. 
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that P( t )+  �89 1/z for all four edges.) Thus we obtained the following 
renormalization group equations: 

r'~ = k 4 [ e ( k l ,  k2 ,  k3)] ~/~ 

r'2 = k 2 [ f ( k l  , k 2, k3)] 1/* 

r~ = k 1 

r~ = g(kx, k2, k3) 

k i  = r 2 [ f ( r l ,  r2, r3)] 1/~ 
k'2 = r4[e ( r  l ,  r2, r3) ] 1/z 

k'3 = rl  

k'4 = g ( r l ,  r2, r3) 

(2.2) 

For the bond percolation problem, C3) we constructed the transfor- 
mation from a, b, c to e, f, g, considering the connection probabilities 
between undecimated sites within the subunits of Fig. la and lb. The 
renormalized occupation probabilities satisfy equations similar to Eq. (2.2). 
(See Ref. 3 for details.) 

3. E I G H T - P A R A M E T E R  R E N O R M A L I Z A T I O N  GROUP 

The statistical average used in the previous method can be avoided by 
introducing different parameters for different surrounding environments. 
For the R lattice, we replace the original parameter rl assigned to single- 
arrowed edges by three parameters r11, r12, and r13 for the cases i-3, 
respectively. We also replace the parameter r2 assigned to double-arrowed 
edges by r2~, r22, and r23 in a similar manner. For the KD lattice, the 
possible cases for edges kl and k2 are links shared by (1) two kites, (2) a 
kite and a dart, and (3) two darts. Accordingly, k~ and k2 are replaced by 
k~l ~k13 and kz~ ~k23 , respectively. Thus, we have eight parameters for 
each type of the Penrose lattice. The half-inflations are illustrated in Figs. 2 
and 3. 

3.1. Ising Model  

A careful inspection of the inflation rules leads to the following 
improved renormalization group equations for the Ising model: 
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r'11 = k4e  k 

' k ',/ r l  2 ~ 4 e  2 

r'13 = k4 

' k f ,  r21  ~ 23 

r~ =/c~f~/2 

, = k21 r 2 3  
r 

?'3 ~ kll 
r~ = g~ 

k ' .  = r i l l ,  

ki2 = r22f~/2 

k'13 = r21 
k'21 = raer 

k'22 = r4elr/2 

k'23 = r4 

k'3=rll 
k '4= gr 

(3.1) 

where {e,f,  g}k -- {e,f ,  g}(k~2, k21, k3) and {e,f,  g}r -= {e , f ,  g}(r12,  r2~, r3). 
It should be noted that  the coupling constants r13 and k~3 are actually 
irrelevant, since neither of the corresponding configurations is allowed: two 
thin rhombi  cannot  share a single-arrowed edge because of the 
inconsistency of the resulting vertex (this can be checked in the listing of 
the legal vertices; e.g., Fig. 8 of Ref. 2) and two darts cannot  share a shorter  
edge due to the matching rule (the sharper  angles have to meet at the same 
end). In fact, in Eq. (3.1), the r' do not  depend on k~3 and the k'  do not  

QQ4 ,' X,K 4 ~ 
"". // f k21 xx ."" 

�9 .% / ~ . . "  

Fig. 2. 
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The half-inflation J~.  The indices i, j, and l are determined by the structure around 
these tiles. 
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Fig. 3. The half-inflation J ~ .  

depend on r13. The equations for r/13 and k'13 are purely formal and can be 
dropped in actual calculation. 

We calculated the critical surface in the parameter space. Three-dimen- 
sional views of the critical surface in the subspace ( r l ,  r2, r3, r4) , where 
rl -- rll = r~2 and r2 - r2~ = r22 = r23 are shown in Fig. 4. We found that they 
are almost indistinguishable from the one obtained from Eq. (2.2) (within 
the thickness of the curves in Ref. 2). This coincidence is quite remarkable if 
one considers the difference between the renormatization group equations 
(2.2) and (3.1). For example, the golden ratio r does not explicitly appear 
in Eq. (3.1); instead, it is hidden in its structure. 

The nontrivial fixed points are at 

(r) = (0.6396, 0.6908, 0.7461, 0.6115, 0.6246, 

0.6379, 0.5504, 0.7124) 

(k) = (0.5504, 0.5801, 0.6115, 0.6379, 0.6741, 

0.7124, 0.6396, 0.7461) 

for R and KD lattices, respectively. The standard procedure for the critical 
exponent (2'8) yields yT=0.9486, which leads to the specific heat critical 
exponent c~- -0 . t083.  
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Fig. 4. A perspect ive  view of the cri t ical  surface for the Is ing mode l  on the R lat t ice (a)  in 

the ( r l ,  r 2, r3) subspace  for r 4 = 1 and  (b) in the (r~, r2, r4)  subspace  for r 3 = 1. (r I =- r l l  = r i z  
r2-= r21 = r22 = r23.) The  cri t ical  surface consis ts  of the regions abed and  abc of the shaded  area. 

The remainder  of the shaded  area  are shown  only  to gu ide  the eye. 
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3.2. B o n d - P e r c o l a t i o n  M o d e l  

For  the bond percolat ion problem, the renormalizat ion group 
equations read 

J"K 

rtll ~- 1 - -  (1  - -  k a ) ( 1  - e k )  2 

r'12 = 1 - -  (1 - -  k 4 ) ( 1  - e k )  

ri3 = 1 - ( 1 - k 4) 

r~l = 1 - - (1  -- k23)(1 _ f , ) 2  

r~2 = 1 - (1 - k22)(1 - f , )  

r~3= 1 - ( 1  - k 2 1  ) 

r'B = k ll 

/4 = gl, 

k'11 = 1 -- (1 -- r23)(1 - - f r )  2 

ktl2 = 1 - -  ( l  - -  r 2 2 ) ( 1  --fr) 
k'13 = 1 - ( 1  - r 21  ) 

ki~ = 1 - ( 1  - r4)(1 - - e r )  2 

k~2= 1 -  ( 1 - r 4 ) ( 1 - G )  

k ~ 3 =  1 - ( l - r 4 )  

k; = r l l  

G 

where {e,f,  g}k--- {e,f,  g}(k12, 

(3.2) 

= gr 

k21, k3) and {e,f,  g}r = {e,f,  g} ( r12 ,  r21, r3) 
r~3 and k~3 are are functions defined in Ref. 3. As in the Ising model,  

irrelevant. The nontrivial  fixed points are at 

(r) = (0.2955, 0.2306, 0.1596, 0.3237, 

0.3019, 0.2794, 0.3911, 0.1806) 

(k) = (0.3911, 0.3583, 0.3237, 0.2794, 

0.2316, 0.1806, 0.2955, 0.1596) 

for R and K D  lattices, respectively. The correlat ion length critical exponent  
is found to be v =  1.2555 for both  lattices. The critical percolat ion 
probabil i ty for the case when bonds exist only along the edges of R tiles 
(i.e., rl = r2, r3 = r4 = 0) is given by 0.4048. 

4. C O N C L U S I O N  

We have extended our  previous four-parameter  Ising model  and bond 
percolat ion model  on the Penrose lattice to eight parameters  and carried 
out the renormalizat ion group analysis. As in any nontrivial  theory, the 
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exact renormalization group would include an infinite number of 
parameters. The renormalization group based on a finite number of 
parameters is obtained only after some approximation. Thus, one could 
expect that the increase in the number of parameters would inprove the 
degree of approximation. The result of our analysis in generally in line with 
this view. For  the Ising model, we obtained the specific heat critical 
exponent c~ = -0.1083. This is a 6% improvement over our previous result, 

-- -0.1153, assuming universality. In other words, the fact that we have 
obtained e closer to the universal value by enlarging the parameter space 
suggests that the exact value of c~ is 0, the universal value. We also note 
that our previous method based on the statistical average is not an over- 
simplification, since it gives the critical surface and the critical exponent 
close to the ones given by the present method. 

For  the bond percolation model, the present method yielded the 
critical exponent v = 1.2555, which should be compared with our previous 
value, v = 1.2928. Since the universal value is considered to be vu = 4/3, our 
new value is worse than our old value. However, since the application of 
our method to the square lattice gave v =  1.2079, we think that the 
remarkable agreement of our previous data with v v was rather an accident. 
Our new value is still in agreement with v ~ within the range of error obser- 
ved in the square lattice case. 

Thus we conclude that our analysis strongly suggests that the Penrose 
lattice belongs to the universal class of regular two-dimensional lattices. 
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